Rural America Could be Left Behind in 5G Global Race

“The United States is making choices that will leave rural America behind,” FCC Commissioner Jessica Rosenworcel writes in WIRED.

So far the United States 5G focus has been on mmWave high-band service, which is not a good technology for rural applications.

This means that high-band 5G service is unlikely outside of the most populated urban areas. The sheer volume of antenna facilities needed make this service viable makes it too costly to deploy in rural areas. So if we want to serve everywhere—and not create communities of 5G haves and have-nots—we are going to need a mix of airwaves that provide both coverage and capacity. That means we need mid-band spectrum. For rural America to see competitive 5G in the near future, we cannot count on high-band spectrum to get the job done.

It should be noted the T-Mobile/Sprint strategy is to focus on the low-bands, and AT&T is claiming a multi-band approach, while Verizon is using a high-band mmWave approach.

 

Advertisements

Comstocks: Slow Progress for Fast Speeds

 

Two years after partnering with Verizon, few Sacramento neighborhoods have 5G availability

Russell Nichols has the details in the June issue of Comstock’s magazine.

In December, Earl Lum spent the holiday season snooping around Sacramento’s eight city council districts, snapping pictures of city-owned street lights for evidence. The wireless analyst was on a mission to assess the status of Verizon’s 5G Home network, which launched in the capital in October 2018.

He came bearing questions: How many poles had the shoe-boxed sized 5G radios mounted on them? Were these fixed wireless sites only in wealthier neighborhoods? Did they target businesses? It took him three trips to map every pole. Each time, he scouted for two to three days from dawn to dusk. For an official launch of a network like this, Lum believes at least 2,000 sites with about 50 percent service coverage would be respectable. But what he found was some 200 small cells attached to street lights with broadband signals reaching less than 10 percent of Sacramento’s population.

“The network was extremely limited,” says Lum, founder of EJL Wireless Research in Half Moon Bay, who has analyzed wireless and mobile radio access markets for over 20 years. “There was clearly not enough sites to even do what I would call a real launch for a network.”

There are 40,000 city-owned poles in Sacramento with about 9,000 being suitable for wireless development, according to city officials. But Lum argues that those suitable poles only cover the main streets, and the distance of the signals from each site fails to fill the gaps. Another issue he points out is the millimeter wave technology, which is line of sight, meaning trees and rain can disrupt signals.

Two years after the city’s partnership with Verizon was announced, Lum’s findings – published in the report United States 5G Fixed Wireless Access Case Study, Verizon Wireless and the City of Sacramento, CA – paint a sobering picture. The city boasted of being one of the first four test cities for the telecom giant’s 5G network. Officials called the move a major step toward a future of lightning-fast speeds, smart meters and wearable technology, and, down the line, industrial automation and self-driving cars. They called it a “game-changer.” But if the game has any hope of changing, Lum says the city would need as many as 4,000 sites to provide full coverage, an undertaking that could take up to 10 years.

“Everyone did a lot of field trials prior to the launch,” Lum says. “[Verizon wasn’t] going into this whole thing blind. Part of this survey was to do a fact check on the reality.”

Continue reading HERE.

Russell Nicholes captures the struggle that Sacramento is going through to implement 5G.  Think about the struggle that your community would go through to implement mmWave 5G with the need to maintain the line of sight connections and the antenna spacing needed to provide full coverage. Does your community have unique street lighting infrastructure that would inhibit the use of standard mini-cell tower installations, such as these in historic downtown Nevada City?

Screen Shot 2019-06-08 at 6.32.17 AM
Nevada City Street Lights on Main Street

Here is a Chicago Mini-Cell Tower

Chicago_Verizon 5G minitower
Verizon Minoi-Town in Chicago 

“Deployment of 5G services using microwave and millimeter wave frequency bands is critical to the success of 5G in the United States. However, the limitations we have uncovered using these frequency bands should cause the industry to take a serious look at the return on investment for these types of 5G networks.” 

— Earl Lum Microwave Journal.

Today: FCC 5G Infrastructure Push

— Sens. John Thune (R-S.D.) and Brian Schatz (D-Hawaii) are today bringing back their STREAMLINE Small Cell Deployment Act, a measure aimed at speeding up 5G wireless buildout. The proposal drew fierce pushback during the last Congress from local governments that viewed it as federal overreach. Although the two sponsors had suggested they would take those concerns into account, the new version is no different than what they unveiled last summer. “Making 5G technology a reality has been a priority for me since I began serving on the Commerce Committee,” Thune said

Source: POLITICO Morning Tech

This has implication for all rural communities, especially those communities trying to preserve their historical charm. Experience has shown that mmWave 5G needs to have a small cell site on every block, see details HERE and HERE.

Chicago_Verizon 5G minitower
Ugly Chicago Mini-Cell Tower

Those providers that are using low band (600-800MHz) 5G will be more welcome in rural communities as fewer cell sites are needed, reducing line of site requirements. The downside is low band 5G cannot provide the mind-blowing speeds that mmWave 5G does. Will rural towns, cities, and neighborhoods get to pick their provider and the technology used to provide 5G under the STREAMLINE Small Cell Deployment Act, or do they get whoever shows up? Verizon is using a mmWave strategy, AT&T a mixed approach, while T-Mobile/Sprint is planning to use low band and existing 4G frequencies for their 5G services. More decisions will depend on the spectrum the FCC is offering for 5G services, both mobile and fixed.

This is going to be an ugly fight to keep ugly technology out of rural towns and villages. If I were responsible for 5G implementation, I would be working with designers to develop a classic mini-cell enclosure, to hide the ugly electronics and wire bundles.  Your thoughts?

Digital Trends Reviews Chicago’s 5G

Verizon activated its first 5G network in the U.S. on April 3, a week ahead of schedule, and Digital Trends flew to Chicago to see how it performs. In the video, you can see what a Verizon mini-cell looks like hung on lamp poles. The tests demonstrate why mmWave technology will not work well in rural areas. The high-speed range of the mini-cell tested was less than a city block.  Note the 5G timeline suggested by the reviewer, 2021 +?

Video link is HERE.

Verizon On Nationwide 5G

— The wireless giant recently launched its 5G network in two cities — Minneapolis and Chicago — but will the rest of the country get coverage? Verizon’s Ronan Dunne, president of the company’s consumer group, told Margaret, “Our absolute plans are nationwide 5G coverage. How we achieve that may be technologically different in different places.”

— The company’s vision for reaching that goal? Dunne said a dense network that relies on high-frequency airwaves makes sense for 5G in urban areas, but for rural and semi-rural areas, a mix of spectrum that offers both coverage and capacity is key. “We will continue to re-farm the existing spectrum we have in the mid and low bands, and we will continue to encourage the FCC and the government to bring more and more spectrum — both high-frequency and midband — and make it available as quickly as possible.”

Source: POLITICO Morning Tech

The use if lower frequency UHF and Mid-Band spectrum are critical for rural communities.  Lower frequencies have the longer reach needed in rural applications. However, lower frequencies have narrower bandwidths with lower throughput speeds.  Some G5 is better than no G5.

Sacramento 5G Insights

by Russ Steele

Verizon cut a deal with the City of Sacramento to bring 5G to the community using city infrastructure, such as light poles to attach and power 28GHz small cell antennas.   

In December and January, from dawn until dusk for eight days, Earl Lum of EJL Wireless Research drove around Sacramento surveying the Verizon 5G network. In a recent article, lightreading.com shared some of Lum’s insights.

Below are three observations Lum made while surveying what he estimated were 99% of Verizon’s 5GTF cell sites across Sacramento (the analyst is selling a complete report of his work on his website).

1 – Verizon’s 5G Home service covers around 10% of Sacramento.

“It’s pretty sparse,” Lum concluded of the network’s coverage, adding that he counted “several hundred” 5G sites.

This doesn’t come as a total surprise. After all, Verizon’s network is exclusively using the operator’s 28GHz spectrum, which is ideal for carrying huge amounts of data but not for covering large geographic areas. Verizon has said 28GHz signals can travel around 1,000 feet, but Lum said he mostly calculated signals traveling about 500 feet, based on the locations of the 28GHz transmitters and potential customers’ addresses (Verizon, for its part, boasts of a further reach in some cases, as do some other surveys of Verizon’s 5G network).

“It’s not 600MHz,” Lum noted, pointing to the kind of low-band spectrum that T-Mobile plans to use for its 5G deployment. Such low-band spectrum can cover far more geographic territory than millimeter-wave spectrum like 28GHz.

2 – All of Verizon’s 5G transmitters were attached to streetlights.

While this might not seem like a big deal, it kind of is. Lum explained that all of Verizon’s 5GTF transmission radios were attached to the tops of streetlights and not to any other structures, like traffic signals or rooftops, possibly because Verizon only has permission from the city to use streetlights (Verizon inked a public-private partnership with Sacramento in 2017).

This situation reflects the fact that small wireless transmitters — generally referred to as small cells — have been difficult for operators to deploy in part because they typically sit on city-owned infrastructure. And, as anyone who has dealt with local regulators knows, getting a city’s permission to make changes to city-owned stuff is challenging at best. For example, tower company Crown Castle typically allocates a full two years to get local approvals for small cell installations.

Another, and perhaps more important, possible takeaway from Lum’s work is that streetlights probably aren’t the best locations for a 28GHz network that provides mobility services. Lum explained that, to create an efficient grid of coverage for cars, dog walkers and others, operators likely would want to install their equipment on top of traffic signals at intersections, not on streetlights in the middle of a neighborhood.

“You don’t need a site in the middle [of a street, like a streetlight], you just need them on the bookends, pointing at each other,” Lum said. “At some point you’re going to have to go to the corners” for a millimeter-wave mobile network.

3 – Most sites only had one 5G antenna.

Lum said that most of the streetlights with Verizon’s equipment only had one antenna, and none of them had equipment for 4G LTE. Lum explained that this is noteworthy because it likely indicates Verizon is only blasting 5G service from that streetlight toward a specific set of customers.

Why? Well, most modern cellular antennas have a 90-degree or 120-degree field of coverage. Meaning, if you want to cover everything around a tower site, you need to install three or four different antennas, each covering a different part of the circle. Since most of Verizon’s sites only had one antenna, that means the company is blasting its signal toward a specific area or group of buildings, rather than everything around that site.

Lum said he saw a few sites with two antennas, but none with more than that.

Part of the issue, Lum said, may be due to the sheer weight a streetlight can handle. After all, Verizon and the city of Sacramento probably don’t want streetlights falling over because they’re too top-heavy with 5G equipment.

Antenna placement brings up an interesting point.  There are four mobile phone companies, AT&T, Verizon, Sprint and T-Mobile which are planning to provide 5G services. All are planning to offer mobile services, some also fixed wireless services.  If an antenna is required every 500-1000 feet for mobile services in the mmWave spectrum, where are the city’s going to find places for all the antennas?  If a light pole cannot handle a full complement of 360-degree antenna coverage due to the weight for one company, how are four companies all going use the strategically located light poles? If as Lum states the ideal antenna location is at intersections, will the stop light standards be strong enough for four companies to install full complement 5G antennas?

A city needs to have at least two 5G providers to provide some pricing competition, can the light standards hold multiple piazza box antenna from at least two providers?  How will the standard hold up in high wind areas?  Those flat antenna can provide significant wind resistance, for an arm only engineering to hold a street light. 

Tower company Crown Castle has made a significant bet on small cells, and has deployed thousands of the gadgets in recent years. During the company’s most recent quarterly earnings conference call with investors, Crown Castle CEO Jay Brown said that the company typically designs its deployments to account for two small cells per mile — but he said in dense urban areas that count can increase to six or ten small cells per mile, or roughly one every 500 feet.

To quote Lum, “you’re talking about a crapload of poles.”

Another insight was the length of time it takes to permit a small cell. One company installing small cell towns expects the process to take two years.

Crown Castle typically allocates a full two years to get local approvals for small cell installations.

Unless the Federal Government takes some action to accelerate local approvals, it will be a long time before some neighborhoods see 5G is they ever see it at all. 

FCC Wins Battle In Small Cell Litigation?

— The FCC notched a victory Thursday in the court fight over its order pre-empting city and state laws on fees and timelines for 5G equipment installation. The 10th Circuit Court of Appeals denied a request from several cities, including Seattle and California’s San Jose and Huntington Beach, to halt implementation of the order while the litigation is pending. The court sided with the FCC, which opposed the request, finding that the cities failed to show that there would be “irreparable harm” if the order takes effect in part as planned Jan. 14. Republican Commissioner Brendan Carr, who spearheaded the order, cheered the ruling as “more good news for U.S. leadership on 5G.”

— Win some, lose some: The 10th Circuit, based in Denver, also on Thursday granted a request from the cities to transfer the case to the 9th Circuit Court of Appeals in California. The FCC, Verizon, Sprint and industry trade groups had opposed the transfer.

Source: POLITICO Morning Tech

Well, with the transfer to the 9th Circus it will not be long before we are reading about a reversal of this decision. The 9th Circus is the most liberal anti-capitalism court in the Nation. I would give the Cities a win and the 5G Providers a loss. This issue will most likely end up at the Supreme Court.