C|NET’s 5G Glossary

Do you want to show off your 5G knowledge to your friends? Or seem like the smartest person at a party? Check out C|NET’s 5G glossary below. 

5G NR 

The 5G bit is pretty obvious, but the NR stands for New Radio. You don’t have to know a lot about this beyond the fact that it’s the name of the standard that the entire wireless industry is rallying behind, and it just came out in December.

That’s important because it means everyone is on the same page when it comes to their mobile 5G networks. Carriers like AT&T and T-Mobile are following 5G NR as they build their networks. But Verizon, which began testing 5G as a broadband replacement service before the standard was approved, isn’t using the standard — yet. The company says it’ll eventually adopt 5G NR for its broadband service, and intends to use NR for its 5G mobile network.

Millimeter wave

All cellular networks use airwaves to ferry data over the air, with standard networks using spectrum in lower frequency bands like 700 megahertz. Generally, the higher the band or frequency, the higher the speed you can achieve. The consequence of higher frequency, however, is a shorter range.

To achieve those crazy-high 5G speeds, you need really, really high-frequency spectrum. The millimeter wave range falls between 24 gigahertz and 100 gigahertz.

The problem with super-high-frequency spectrum, besides the short range, is it’s pretty finicky — a leaf blows the wrong way and you get interference. Forget about obstacles like walls. Companies like Verizon are working on using software and broadcasting tricks to get around these problems and ensure stable connections.

Small cell

Traditional cellular coverage typically stems from gigantic towers littered with different radios and antennas. Those antennas are able to broadcast signals at a great distance, so you don’t need a lot of them. Small cells are the opposite —  backpack-size radios can be hung up on street lamps, poles rooftops or other areas. They can only broadcast a 5G signal at a short range, so the idea is to have a large number of them in a densely packed network. 

Some cities have this kind of dense network in place, but if you go outside of the metro area, that’s where small cells become more of a challenge. 

Sub-6GHz

Given how troublesome really high-band spectrum can be (see the “millimeter wave” section above), there’s a movement to embrace spectrum at a much lower frequency, or anything lower than 6GHz. The additional benefit is that carriers can use the spectrum they already own to get going on 5G networks. T-Mobile, for instance, has a swath of 600MHz spectrum it plans to use to power its 5G deployment. Prior to sub-6GHz, that would’ve been impossible.

That’s why you’re seeing more carriers embrace the lower-frequency spectrum.

But the lower-frequency spectrum has the opposite problem: While it reaches great distances, it doesn’t have the same speed and capacity as millimeter wave spectrum.

The ideal down the line will be for carriers to use a blend of the two.

Gigabit LTE

You’re hearing more about Gigabit LTE as a precursor to 5G. Ultimately it’s about much higher speeds on the existing LTE network. But the work going toward building a Gigabit LTE network provides the foundation for 5G.

For more on Gigabit LTE, read our explainer here.

MIMO

An abbreviation of “multiple inputs, multiple outputs.” Basically, it’s the idea of shoving more antennas into our phones and on cellular towers. And you can always have more antennas. They feed into the faster Gigabit LTE network, and companies are deploying what’s known as 4×4 MIMO, in which four antennas are installed in a phone.

Carrier aggregation 

Wireless carriers can take different bands of radio frequencies and bind them together so phones like the Samsung Galaxy S8 can pick and choose the speediest and least congested one available. Think of it as a three-lane highway so cars can weave in and out depending on which lane has less traffic.

QAM 

This is a term that’s so highly technical, I don’t even bother to explain the nuance. It stands for quadrature amplitude modulation. See? Don’t even worry about it.

What you need to know is that it allows traffic to move quickly in a different way than carrier aggregation or MIMO. Remember that highway analogy? Well, with 256 QAM, you’ll have big tractor trailers carrying data instead of tiny cars. MIMO, carrier aggregation and QAM are already going into 4G networks, but play an important role in 5G too.

Beamforming 

This is a way to direct 5G signals in a specific direction, potentially giving you your own specific connection. Verizon has been using beamforming for millimeter wave spectrum, getting around obstructions like walls or trees.

Unlicensed spectrum 

Cellular networks all rely on what’s known as licensed spectrum, which they own and purchased from the government.

But the move to 5G comes with the recognition that there just isn’t enough spectrum when it comes to maintaining wide coverage. So the carriers are moving to unlicensed spectrum, similar to the kind of free airwaves that our Wi-Fi networks ride on.

Network slicing

This is the ability to carve out individual slivers of spectrum to offer specific devices the kind of connection they need. For instance, the same cellular tower can offer a lower-power, slower connection to a sensor for a connected water meter in your home, while at the same time offering a faster, lower-latency connection to a self-driving car that’s navigating in real time.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s